ROBUSTLY ASYMPTOTIC MEASURE EXPANSIVE CLOSED SETS

Manseob Lee*

ABSTRACT. In this paper, we show that if a transitive set Λ is robustly asymptotic measure expansive then Λ is hyperbolic.

1. Introduction

Let M be a compact smooth manifold and $f: M \to M$ be a diffeomorphism. For any $\delta > 0$ and $x \in M$, we define $\Gamma_{\delta}(x) = \{y \in M : d(f^{i}(x), f^{i}(y)) \leq \delta \ \forall i \in \mathbb{Z}\}$, which is called a δ -ball. If a diffeomorphism f is expansive then $\Gamma_{\delta}(x) = \{x\}$, that is x = y. Measure theoretic expansive was suggested by Morales and Sirvent [7] firstly, and a general notion was introduced in [1] which is called asymptotic measure expansive.

Let $\mathcal{M}(M)$ be a Borel probability measure on M. For any $\mu \in \mathcal{M}(M)$ and any closed f-invariant set $\Lambda \subset M$ is said to be asymptotic μ -expansive (or Λ is asymptotic measure expansive) for f if there is $\delta > 0$ (called an asymptotic measure expansive constant) such that $\mu(f^n(\Gamma_{\delta}(x))) \to 0$ as $n \to \pm \infty$. If $\Lambda = M$ then we say that f is asymptotic μ -measure expansive (or f is asymptotic measure expansive).

It is known that $f^n(\Gamma_{\delta}(x)) = \Gamma_{\delta}(f^n(x))$ for all $n \in \mathbb{Z}$. It is a general notion of μ -expansivity (see [1]).

A closed f-invariant set $\Lambda \subset M$ is called hyperbolic if the tangent bundle $T_{\Lambda}M$ has a Df-invariant splitting $E^s \oplus E^u$ and there exist C > 0 and $\lambda \in (0,1)$ such that $\|D_x f^n(v)\| \leq C\lambda^n \|v\| (v \in E_x^s \setminus \{0\})$ and $\|D_x f^{-n}(v)\| \leq C\lambda^n \|v\| (v \in E_x^u \setminus \{0\})$, for all $x \in \Lambda$ and $n \geq 0$.

A point $x \in M$ is called a *periodic point* if there is $n_x > 0$ such that $f^{n_x}(x) = x$ and called a *non-wandering point* if any neighborhood U_x of

Received August 30, 2024; Accepted September 12, 2024.

²⁰²⁰ Mathematics Subject Classification: 37C40; 37C75.

Key words and phrases: expansive; asymptotic measure expansive; transitive set; local star; hyperbolic.

x there is $n \geq 0$ such that $f^n(U_x) \cap U_x \neq \emptyset$. Let Per(f) be the set of all periodic points of f and $\Omega(f)$ be the set of all non-wandering points of f. It is known that $Per(f) \subset \Omega(f)$. A diffeomorphism f is $Axiom\ A$ if $\overline{Per(f)} = \Omega(f)$ is hyperbolic.

A main interesting issue of differentiable dynamical systems is hyperbolicity of a closed invariant set. A closed f-invariant set $\Lambda \subset M$ is called robustly asymptotic measure expansive if there are a C^1 neighborhood \mathcal{U} of f and a neighborhood U of Λ such that $\Lambda = \bigcap_{n \in \mathbb{Z}} f^n(U)$ and for any $g \in \mathcal{U}$, $\Lambda_g = \bigcap_{n \in \mathbb{Z}} g^n(U)$ is asymptotic measure expansive, where Λ_g is the continuation of Λ .

A closed f-invariant set $\Lambda \subset M$ is called a transitive set if there is a point $x \in \Lambda$ such that the omega limit set of x, $\omega_f(x)$, is Λ . Using the notion and a transitive set Λ , Lee and Park [6] proved that if Λ is robustly expansive then Λ is hyperbolic for f. Lee [3] proved that if Λ is robustly continuum-wise expansive then Λ is hyperbolic for f and Lee [5] proved that if Λ is robustly weak measure expansive then Λ is hyperbolic. The results are a motivation about this paper. The following is a main result of this paper.

THEOREM 1.1. Let $\Lambda \subset M$ be a transitive set of f. If Λ is robustly asymptotic measure expansive for f, then Λ is hyperbolic for f.

2. Proof of Theorem 1.1

LEMMA 2.1. Let $A \subset M$ be a closed f-invariant set. If a diffeomorphism $f^k : A \to A$ is the identity map, for some $k \in \mathbb{Z} \setminus \{0\}$ then f^k is not asymptotic measure expansive.

Proof. Suppose that $f^k: A \to A(k \in \mathbb{Z} \setminus \{0\})$ is asymptotic measure expansive. Let m be the Lebesgue measure on A. For a Borel set $C \subset M$, we define $\nu \in \mathcal{M}(M)$ by

$$\nu(C) = \frac{1}{k} \sum_{i=0}^{k-1} m(f^{-i}(C \cap f^{i}(A))).$$

Let $\delta > 0$ be the number of the asymptotic measure expansive constant. By continuity, there is $\epsilon > 0$ such that if $d(x,y) < \epsilon(x,y \in M)$ then $d(f^i(x), f^i(y)) < \delta$ for $0 \le i \le k-1$. For any $x \in M$, we define $\Gamma_{\delta}(x) = \{y \in M : d(f^k(x), f^k(y)) \le \delta, \ \forall k \in \mathbb{Z}\}$. Since $f^k : A \to A$ is the identity map, for any $x \in A$, we see that $\Theta_{\delta}(x) = \{y \in A : d(x,y) < \epsilon\} \subset \Gamma_{\delta}(x)$. It is clear that $\nu(f^n(\Theta_{\delta}(x))) = \nu(\Theta_{\delta}(x)) > 0$ for all $n \in \mathbb{Z}$. Since

 $\nu(f^n(\Gamma_{\delta}(x))) \to 0 \text{ as } n \to \pm \infty, \text{ but } \nu(f^n(\Theta_{\delta}(x))) = \nu(\Theta_{\delta}(x)) \not\to 0 \text{ as } n \to \pm \infty.$ This is a contradiction.

Note that a diffeomorphism f is asymptotic measure expansive if and only if f^k is asymptotic maesure expansive, for all $k \in \mathbb{Z} \setminus \{0\}$. For any closed f-invariant set Λ , we say that Λ satisfies a local star condition(or f is local star on Λ) if there are a C^1 neighborhood \mathcal{U} of f and a compact neighborhood \mathcal{U} of Λ such that every periodic point in Λ_g is hyperbolic, for any $g \in \mathcal{U}$, where $\Lambda_g = \bigcap_{n \in \mathbb{Z}} g^n(\mathcal{U})$. Denote by $\mathcal{S}(\Lambda)$ the set of all diffeomorphisms f satisfying a local star condition on Λ .

LEMMA 2.2. Let $\Lambda \subset M$ be a closed set. If Λ is robustly asymptotic measure-expansive then $f \in \mathcal{S}(\Lambda)$.

Proof. Let \mathcal{U} and U be the definition of robustly asymptotic measure expansivity. Suppose that by contradiction there exists a diffeomorphism $f \notin \mathcal{S}(\Lambda)$. Then we can take a diffeomorphism $g \in \mathcal{U}$ such that g has a periodic point $p \in \Lambda_g$ which is not hyperbolic. Then $D_p g^{\pi(p)}(g^{\pi(p)}(p) = p)$ has an eigenvalue λ with $|\lambda| = 1$. As in the proof of [3], we assume that g(p) = p. Using Franks' Lemma ([2]), there are r > 0 and $g_1 \in \mathcal{U}$ such that g_1 has a small arc $\mathcal{J}_p \subset U$ such that for some $k \in \mathbb{Z}$, (i) $g_1^k(\mathcal{J}_p) = \mathcal{J}_p$ and (ii) $g_1^k|_{\mathcal{J}_p} : \mathcal{J}_p \to \mathcal{J}_p$ is the identity map. By Lemma 2.1, g_1^k is not asymptotic measure expansive. This is a contradiction.

LEMMA 2.3. [4] Let $\Lambda \subset M$ be a transitive. If f is a local star on Λ , then Λ is hyperbolic.

End of the Proof of Theorem 1.1 Since Λ is robustly asymptotic measure expansive, by Lemma 2.2, f satisfies a local star on Λ . By Lemma 2.3, Λ is hyperbolic.

References

- [1] A. Fakhari , C. A. Morales , and K. Tajbakhsh , Asymptotic measure expansive diffeomorphisms, J. Math. Anal. Appl., 435 (2016), 1682–1687.
- [2] J. Franks, Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc., 158 (1971), 301-308.
- [3] M. Lee, Continuum-wise expansiveness for discrete dynamical systems, Revist. Real Acad. Cien. Exact. Físicas y Naturales. Serie A. Mate., 115, Article number: 113 (2021).
- [4] M. Lee, Inverse pseudo orbit tracing property for robust diffeomorphisms, Chaos, Solitons & Fractals, 160 (2022), 112150.
- [5] M. Lee, Weak measure expansive transitive sets, J. Chungcheong Math. Soc., 37(2024), 81-87.

- [6] M. Lee and J. Park, Expansive transitive sets for robust and generic diffeomorphisms, Dynam. Syst., 33 (2018), 228?238.
- [7] C. A. Morales and V. Sirvent, *Expansive measure*, 290 Colóquio Brasileiro de, 2013.

Manseob Lee Department of Marketing BigData, Mokwon University Daejeon 302-729, Korea.

 $E ext{-}mail: lmsds@mokwon.ac.kr}$